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Boolean Machinery for Quantum Logics 
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The arithmetical tools based on Boolean matrices are described. They are 
applied to finite ortholattices to decompose them into products and sums, and 
to check atomisticity and orthomodularity. 

1. INTRODUCTION 

One can find finite ortholattices mentioned in most papers related to 
quantum logic. They are the basic source of examples (and counterexam- 
pies, too). Besides, if at some time quantum logic grows to be a calcula- 
tional tool [as I hope happens sooner or later (Grib and Zapatrin, 1992; 
Zapatrin, 1993)], finite lattices could form the approximation medium for 
these future calculations. In any event, the machinery I describe was 
implicitly used in various lattice constructions, so its explicit exposure 
seems appropriate. This paper consists of the following. 

The general polarity construction in the special case yielding finite 
ortholattices is described in Section 2. 

Section 3 introduces the underlying Boolean matrices which are the 
basis of the proposed techniques. 

Section 4 shows how the underlying matrices can be extracted from 
lattices described as orthoposets. The criterion is also established for an 
arbitrary Boolean matrix to be underlying for an ortholattice. 

Section 5 is the first application of the proposed machinery: an 
algorithm is suggested which checks whether the lattice is atomistic. 
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In Section 6 a more essential application is described: the recipe of 
decomposition of lattices into the cardinal products and horizontal sums of 
smaller lattices. 

Section 7 provides the necessary and sufficient condition for an 
arbitrary finite ortholattice to be orthomodular. The proposed algorithm is 
exhaustive; however, it requires only one ranging over elements of  the 
lattice in question. 

2. POLAR LATTICES 

In this section the polarity construction is described which is the 
standard source of  complete orthocomplemented lattices. 

Let V be a set equipped by a relation 1 called orthogonality such that 
• is symmetric (u _L v ==> v • u) and irreflexive (there is no such u ~ V that 
u •  

Definition I. 1. The polar to a subset A _ V is the subset A x ~_ V: 

A•  a • v} (1.1) 

Definition 1.2. The closure ClA of a subset A c V is its bipolar: 

CIA ,= A -L• 

Definition 1.3. The collection F = F(V) of all closed subsets of  V is 
called a polar lattice. 

Theorem I.I. (i) The operation C1 is really closure, that is, for any 
A, B ~_ V: 

(C1) A ~ CIA. 
(C2) A _ B implies CIA ~ CIB. 
(C3) CICIA = CIA 

(ii) F(V) is the complete ortholattice: its partial order is set inclusion, 
and orthocomplements are polars (1.1). 

Proof  See Birkhoff (1967, Chapter 5). 

A subset V of a lattice L is called join-dense if any element a ~ L  can 
be represented as a join of elements of V: a = V {v ~ Vlv < a}. Note that 
any lattice L contains join-dense subsets: as an example, it can be L itself 
(this will be used in Section 4). 

Theorem 1.2. Let (L, ') be a complete ortholattice, and V is a join- 
dense subset of L. Define the orthogonality relation • on V: 

u .l_ v iff u < v' 
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Then the polar lattice F(L) is orthoisomorphic to L. 

Proof. See McLaren (1964). 

Note that any lattice L contains join-dense subsets: L itself is an 
example of such a subset. 

Definition 1.4. An element a e L  is called an amount iff it is join-irre- 
ducible. Denote by V the set of all amounts of L: 

a ~ V  means a # V { b ~ L [ b < - a & b # a  } 

Any atom of L is amount (but not vice versa; for counterexample see the 
Example 4.1 below). When L is finite, the set V of all amounts is the least 
join-dense subset of L. 

So, it follows from McLaren's (1964) theorem that any finite ortholat- 
ticc L is unambiguously defined by the set V of its amounts and the 
orthogonality relation • on V (see also Zapatrin, 1991, n.d.). 

3. BOOLEAN MACHINERY 

This section introduces two sorts of Boolean matrices, called underly- 
ing, associated with polarities and finite ortholattices. The criterion is 
established for an arbitrary Boolean matrix to be underlying for an 
ortholattice. 

Let L be a finite ortholattice and V be the set of amounts of L. Two 
basic relations are defined on V. The first is the orthogonality • and the 
second is its complement, the nonorthogonality relation [called sometimes 
accessibility, or possibility (Finkelstein and Finkelstein, 1983)] 

uPv iff "a(u _1_ v) (3.1) 

I introduce two kinds of matrices characterizing the lattice, called P-ma- 
trices and O-matrices: 

Definition 3. I. The underlying O-matrix of a finite ortholattice L with 
the set of amounts V is the Boolean IV[ • IV[ matrix whose elements are 
defined as 

(9,~:=~1 if u •  
0 otherwise 

Definition 3.2. The underlying P-matrix for the ortholattice L is the 
Boolean IV] x tV 1 matrix associated with the relation P, (3.1): 

~ : = { ;  if uPv 
otherwise 
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To operate with Boolean matrices the Boolean arithmetics will be needed, 
possessing three operations: 

1. Boolean sum: 0 + 0 = 0 , 0 + 1 = 1 + 0 = 1 + 1 = 1 .  
2. Boolean product: 0 . 0 = 0 . 1 = 1 - 0 = 0 ,  1 . 1 = 1 .  
3. Negation: 0 = 1, T = 0 (or 7 0  = 1, --11 = 0). 

These are distributive with respect to each other: 

a(b + c) = ab + ac; a + bc = (a + b)(a + c) 

and obey the de Morgan law: 

a + b = f t  ./~; (ab) = ~i + 6 

So the relationship between the underlying O- and P-matrices can be 
written as ~ = (~,v. 

Now consider the requirements for an arbitrary square Boolean matrix 
to be the underlying P-  or O-matrix for an ortholattice. The first necessary 
condition is that it must be symmetric and reflexive (to be a P-matrix), or 
irreflexive (to be an O-matrix). It turns out that the sufficient condition for 
P-matrices looks simpler, which is stated by the following theorem. 

Theorem 3.1. A symmetric reflexive IvI x IvI Boolean matrix ~ is the 
underlying P-matrix for a finite ortholattice if and only if its rows (and 
hence columns) are Boolean linear independent. That  is, there is no such 
row ~ , .  o f  ~ that it is the Boolean sum of  some other rows different from 
~,,, (where .~., means {~uv I v~ V}). 

Proof. Since the amounts of  L are join-irreducibles, the matrix #'uv is 
Boolean linear independent (to prove it, suppose the opposite; then the row 
which is the Boolean sum of  some other rows is not an amount). 

Now let ~ be a reflexive symmetric matrix whose rows are Boolean 
linear independent. It suffices to prove that the amounts of  the polar lattice 
generated by the polarity (11, 1I, / ), where u .1_ v means ~.v = 0, are in 
one-to-one correspondence with the rows of  the matrix ~ .  With any row 
P~. the element of  F•  is associated: u ~ {u} •177 Hence, the set of  
amounts of  F is contained among {u}• Now suppose {u} •177 is not an 
amount. This means that there is the collection of  amounts {x} • 
{y}• . . . . .  {z} •  such that {u} "• = {x} •177 v {y}•177 v . . . v  {z} •177 Since 
meets in F are set intersections, {u} • = {x} • n {y}• n . . .  n {z} ' .  Thus for 
any v~1I, u / v if and only if for every x , y  . . . . .  z, x _1_ v ,y  / v . . . . .  
z _L v. In terms of O-matrices one has 
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Then the de Morgan rule yields 

Vv ~uv =~'xv + ~ %  + .  �9 . + ~ =  

which means that the uth row of the matrix ~ is the Boolean sum of  the 
rOWS x , y , . . . , z .  

Now let (V, V, _k ) be an irreflexive symmetric polarity, and let ~ be 
the appropriate P-matrix (Definition 3.2). 

Definition 3.3. A row ~ u ,  of the IvI x IvI matrix ~ is called redundant 
if it is the Boolean sum of some other rows different from the uth. The 
element of the set V associated with this row is also called redundant. 

Finally, Theorem 3.1 can be reformulated as follows: Given a symmet- 
ric reflexive matrix ~ ,  it is the P-matrix of  an ortholattiee i f  and only i f  it 
has no redundant rows. 

4. EXTRACTING OUT BOOLEAN MATRICES 

In this section the algorithm is described based on redundancy crite- 
rion which extracts the underlying Boolean matrices from a lattice de- 
scribed as an orthoposet. 

Now suppose that a finite ortholattice L is stored, say, in the memory 
of a computer as a partially ordered set. That is, all elements of  L (without 
the least and the greatest one, since they are not proper elements) are 
enumerated by 1 , . . . ,  K. The description of  L as an orthoposet consists of  
two parts. The first is the partial order described as the matrix f9 of the 
relation >-, namely 

{10 if i > k  
~ik = otherwise 

The second is the operation of orthocomplementation, which also can be 
defined as a matrix I lk:  

•  if i = k  • 
otherwise 

Extracting Algorithm 
1. Form the matrix product (~.'= _l_q, one has 

J 

2. Consider the matrix ~ = -n d~. These two steps can be contracted 
into one operation, namely 

=H (Tij+ 3j ) 
J 
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The rows 6, 7, 8 are redundant, so the reduced matrix ~ has the form 

1 1 0 1 0 
0 1 0 1 1 

. ~ k =  0 1 1 0 1 
1 I 0 I 0 
0 1 1 0 1 

5. ATOMISTICITY TEST 

In this section the Boolean machinery is applied to test whether a finite 
ortholattice L is atomistic. 

Recall the necessary definitions Atoms and amounts were already 
introduced in Section 2. A finite lattice L is called atomistic if all amounts 
of L are exhausted by atoms (Example 4.1 yields a nonatomistic lattice). 

Atomisticity Test 
1. Consider (or build, or extract) the P-matrix ~ of the lattice in 

question. 
2. Check whether there exists a pair of rows i, k of ~ such that 

V j, ~;j  < ~kj, or in other terms, ~ i ,  < ~k , .  

Criterion. If no pair of rows of ~ is comparable, then L is atomistic. 

To prove that this criterion is right, note that the rows of ~ are in 1-1 
correspondence with the amounts of L. If some pair of rows is comparable, 
that means that the greater one corresponds to a nonatomistic amount. 

6. DECOMPOSITION OF LATTICES INTO SUMS AND PRODUCTS 

In this section the cardinal products and horizontal sums of ortholat- 
tices are represented in terms of underlying matrices. The decomposition 
algorithm based on this representation is suggested. It also becomes clear 
why I had to introduce two sorts of underlying matrices. 

Let L~ and L2 be two ortholattices with the greatest and the least 
elements I~, I 2 and O1, 02, respectively. 

Defin#ion 6.1. The cardinal product (Birkhoff, 1967) Lt x L2 is the 
collection of all pairs of elements from L~ and L2 with the partial order and 
orthocomplements defined element wise: 

L, x L2 = ((al, a2)laa ~L1, a2~L2) 

(ai ,  az) < (bi,  b2) r ai ~ bl & a2 -< b2 

(a,, a2) J- = (ai L, a~) 
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Definition 6.2. The horizontal s u m  L 1 ~) L 2 is their disjoint set-theoretic 
union with the greatest and least elements pasted and the partial order and 
orthocomplements inherited from the summands: 

LI �9 L2 = {(al, 1), al ELl \{O1, Ii }} u {(a2, 2), a 2 6L\{O2, 12}} u {O, I} 

(ai, i) < (bi, i) r ai <- bi, i = 1, 2 

(ai, i) • = (a{, i), i = 1, 2 

Now let VI, V2 be the sets of  amounts of the lattices, and ~1, ~2 and 
(91, (92 be their underlying matrices. 

Theorem 6.1. Let L = L1 x L 2. Then the underlying P-matrix for L is 
t h e  (IV1]-Ji-IVED x (Iv1] + Iv21) matrix of the form ~ = diag(~l,  #2), or 

:1 ;=l (6.1) 

Proo f  First prove that the amounts of L are exhausted by the disjoint 
union V! + V2. In fact, each amount (since it is join-irreducible) must contain 
0 as one of  the components. Hence, the other component is to be an amount 
of  one of  the lattices L1 or L2. Thus, the matrix ~ has the required cardinality. 
To prove that it has the required form, consider four possible cases: 

1. (ul, 02) s (Vl, 02)  ~ Ul .L V 1 �9 

2. ( O ! ,  /22) -J- ( 0 1 , / ) 2 )  ~ U2 .L V 2. 
3. (vl, O2) -L = (v~-, I2) > (O1, v2) for any vl ~ V1. 
4. (O1, v2) • = (I~, v2) -> (vl, O2) for any v2~ V2. 

Hence the O-matrix for L is 

where 1 is the matrix having 1 .in all entries. To complete the proof note 
that ~' = (g. 

Theorem 6.2. Let L = L1 ~ L 2 .  Then the underlying O-matrix for L 
has the form (9 = diag((91, (92), or 

:2 (9 = 1 (6 ,2 )  

Proo f  In this case it is evident that the set of amounts of L is the same 
disjoint sum. To prove it has the required form, consider again four cases: 

1, 2. (vi, i) I (ui, i) r vi _k ui, i = 1, 2. 
3, 4. No pair of elements from different components are orthogonal. 
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These two theorems form the basis for the decomposition algorithm. 
Its idea is the following. Considering both P- and O-matrices (now it is 
clear .why I had to introduce two sorts of matrices) define whether the 
elements of V can be enumerated in such a way that ~ would have the 
form (6.1), or (9 would have the form (6.2). Then it can be claimed that the 
lattice L can be decomposed into a product (if the first possibility is 
realized) or a sum (if the second one holds), or it is not decomposable. The 
problem is to suggest the way to find out, given a Boolean matrix ~ ,  
whether it is decomposable. To do this, I suggest the following: 

Matrix Decomposition Test. Let ~ be a symmetric reflexive Iv I • Ivl 
Boolean matrix. Consider the sequence ~1 = ~ ,  ~2 = ~ ,  ~3 = r  
(the matrix products). Since V is finite and ~ is reflective, starting from 
some k < [V[,~ k+l = ~ k  (in terms of binary relations this means the 
transitive closure of the relation associated with ~). The obtained limit 
relation ~c  is the equivalency on V. Then enumerate the elements of V 
beginning from the first equivalence class, exhausting the classes one 
after another. Then the matrix ~/' obtained from the initial ~ by 
appropriate permutation of rows and columns will have the form 

= diag(~l, ~2, �9 - �9 ~tc), where K is the number of equivalence classes. 

Lattice Decomposition Algorithm 
1. Suppose both P- and O-matrices for L are obtained. Then apply 

the matrix decomposition test to the matrices ~ and (0 + #), where 
g = diag(1, 1 , . . . ,  1)is the unit Ivl • IvI Boolean matrix. This decomposi- 
tion test can be performed as calculating the I V[th powers of the matrices. 

2a. If both ~c  and ((9 + d~) C contain no zero entries, then L is NOT 
decomposable. 

2b. If t~ is decomposable, # = diag(~l, ~2 , . -  -, ~K), then L = L1 • 
L2x  " "  x L x .  

2c. If (9 is decomposable, (9 = diag((9~, (92,. - -, (gK), then L = L~ 
L 2 ~ ' " ~ L K .  

3. To each of the components apply step 2. 

Finally, the lattice wilt be decomposed into the sums and products of 
lattices of smaller cardinality. 

7. O R T H O M O D U L A R I T Y  INQUIRIES 

In this section the Boolean machinery provides the algorithm which 
tests the orthomodularity of the ortholattice. 

First note that any exhaustive orthornodularity test needs ranging over 
elements of L, that is, over subsets of V. This is because the orthomodular- 
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ity of a polar lattice is the second-order property of the orthogonality 
relation on the set V (Goldblatt, 1984). The theoretical ground for the 
proposed orthomodularity test is the result obtained by Foulis (1960). In 
the most suitable form in the sequel it is formulated as follows: 

An ortholattice (L, • is orthomodular if and only if for any a eL the 
mapping p~: L ~-~ L of the form 

Xpa = (X V a • A a (the postfix notation is used) 

satisfies the condition 

Vu, u ~ V  Upa <-v • "r Vpa <---U • 

The idea of the proposed test is to express Upa < V • as a binary 
relation, call it ~ ,  on V, and then to prove that it is symmetric. Now let 
us build this relation using ~ ,  (9, and the following operations with 
Boolean matrices: 

1. Negation: ~ik = (~r 
2. Sum: ( d  + ~)ik = ~r + ~v,- 
3. Matrix product: ( d ~ ) i  k = ~. d~y~yk. 
4. Pointwise product: ( d  ^ ~)~k = d ik~k .  

And one additional operation, denote it ~r ~-+ ~r176 using the matrices 
and (9: 

5. = d: = ]--[ + 
J 

Now, let a be an arbitrary element of L. Using the polar representa- 
tion of L, one can consider a as the subset of V. Define the Boolean matrix 

associated with a as follows: 

= V x  { v e V l v  < a }  (7.1) 

l_emma 7.1: 

~a : ( d  A ((9 A d)~  a (7.2) 

Proof. The proof consists of stepwise development of the right side of 
the expression (7.2). The details of these techniques are in Zapatrin (1992). 

To perform the orthomodularity test, the storage of Boolean vectors 
corresponding to elements of L (as polar lattice of subsets of V) must be 
prepared. 

Orthomodularity Test  
1. For a e L  build the matrix d -- V x a, (7.1). 
2. Build the matrix ~ ,  (7.2). 
3. Check whether ~ is symmetric. 



Boolean Machinery for Quantum Logics 223 

Criterion. L is orthomodular if and only if for every a eL the relation 
~a is symmetric. 

8. CONCLUDING REMARKS 

The Boolean machinery is suggested as a working tool for finite 
ortholattices. As a matter of fact, the area of its application is broader than 
the proposed recipes. For example, if the underlying P-matrix ~ is 
considered not as a Boolean one but as the matrix over the trivial group 
{1} with zero, then the Rees matrix semigroup having ~ as sandwich 
matrix wilt have the annihilator lattice isomorphic to the initial lattice L 
(Zapatrin, n.d.). In the case if L is orthomodular, it will be the Baer 
�9 -semigroup having L as lattice of its closed projectors (Foulis, 1960). 

The extraction algorithm (Section 4) can be applied not only to 
lattices, but to arbitrary finite orthoposets. In this case the lattice restored 
from the obtained underlying matrix will be the McNeille completion of the 
initial poset. 

Finally, I should mention that most of the results can be extended to 
infinite lattices (Zapatrin, 1992) and to lattices without orthocomplementa- 
tion (Zapatrin, n.d.). 
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